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ABSTRACT: We analyse near-horizon solutions and compare the results for the black hole
entropy of five-dimensional spherically symmetric extremal black holes when the N =
2 SUGRA actions are supplied with two different types of higher-order corrections: (1)
supersymmetric completion of gravitational Chern-Simons term, and (2) Gauss-Bonnet
term. We show that for large BPS black holes lowest order o/ corrections to the entropy
are the same, but for non-BPS are generally different. We pay special attention to the class
of prepotentials connected with K3 x T2 and T% compactifications. For supersymmetric
correction we find beside BPS also a set of non-BPS solutions. In the particular case of
T® compactification (equivalent to the heterotic string on 7% x S1) we find the (almost)
complete set of solutions (with exception of some non-BPS small black holes), and show
that entropy of small black holes is different from statistical entropy obtained by counting
of microstates of heterotic string theory. We also find complete set of solutions for K3 x T
and T case when correction is given by Gauss-Bonnet term. Contrary to four-dimensional
case, obtained entropy is different from the one with supersymmetric correction. We show
that in Gauss-Bonnet case entropy of small “BPS” black holes agrees with microscopic
entropy in the known cases.
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Gauss-Bonnet correction in K3 X T? compactifications

1. Introduction

In recent years a lot of attention was directed towards higher curvature corrections in
effective SUGRA field theories appearing in compactifications of string theories. Particu-
larly interesting question is how these corrections are affecting black hole solutions, and in
particular their entropies. One of the main successes so far of string theory is that it of-
fers statistical explanation of black hole entropy by direct counting of microstates. In some
cases it was possible to obtain not only lowest order Bekenstein-Hawking area law, but also
higher corrections in string tension o/, and even o’ exact expressions for the entropy. These
calculations are typically performed in the limit of small string coupling constant g, in the
realm of perturbative string theory, where space-time is almost flat and black holes are
actually not present. It is expected that these objects become black holes when one turns
on gs enough so that their size becomes smaller than their corresponding Schwarzschild
radius. Unfortunately, it is not known how to make direct calculations in string theory
in this regime. However, when one goes in the opposite extreme where the Schwarzschild



radius becomes much larger than the string length ¢; = v/a/, then one can use low energy
effective action where black holes appear as classical solutions.

The situation is especially interesting for BPS black holes. In this case on the pertur-
bative string side one is counting number of states in short multiplets, which is expected
to not depend on g, at least generically (this property can be violated in special circum-
stances like, e.g., short multiplet crossings). This means that one can directly compare
statistical (or microscopic) entropy from perturbative string and macroscopic entropy from
classical supergravity. By comparing the results from the both limits we have not only
succeeded to do sophisticated perturbative consistency checks on the theory, but also im-
proved our understanding both of string theory and supergravity. Developments include
attractor mechanism and relation to topological strings [[l]. Especially fruitful and rich are
results obtained for black holes in D = 4 (for reviews see [B]).

In D = 4 especially nice examples are provided by heterotic string compactified on
K3 x S x 8" or T* x S* x S [[]. The simplest BPS states correspond to large spherically
symmetric black holes having 4 charges (2 electric and 2 magnetic), for which statistical
entropy was found [[|-[f]. The macroscopic black hole entropy was calculated using two
types of actions with higher order R? terms — supersymmetric and Gauss-Bonnet. In the
regime where g, is small near the horizon (limit where electric charges are much larger than
magnetic) all results are ezactly equal (i.e., in all orders in ). This is surprising because
in both of these effective actions one has neglected an infinite number of terms in low
energy effective action and one would at best expect agreement in first order in o/. There
is an argumentation [§, ], based on AdSs; arguments, which explains why corrections of
higher order than R? are irrelevant for calculation of black hole entropy, but it still does
not explain why these two particular types of corrections are working for BPS black holes.

These matches are even more surprising when one takes magnetic charges to be zero.
One gets 2-charge small black holes which in the lowest order have null-singular horizon
with vanishing area, which is made regular by inclusion of higher curvature corrections [[L0,
[[1]. As curvature is of order 1/¢/, all terms in the effective action give a priori contribution
to the entropy which is of the same order in o/. This is a consequence of the fact that here
we are naively outside of the regime where effective action should be applicable.

In view of these results, it would be interesting to consider what happens in higher
dimensions D > 4. 2-charge BPS states and corresponding small extremal black holes
generalize to all D < 9. In [19] it was shown that simple Gauss-Bonnet correction gives
correct result for the entropy of such black holes also in D = 5, but not for D > 5.
Afterwards, in [[L3] it was shown that there is an effective action where higher order terms
are given by linear combination of all generalized Gauss-Bonnet densities (with uniquely
fixed coefficients) which gives the correct entropy for all dimensions. For large black holes
things do not generalize directly. In D = 5 simplest are 3-charge BPS black holes, but even
for them statistical entropy is known only in lowest order in o/ [[[4]. Let us mention that
the argumentation based on AdS3 geometry has not been generalized to D > 4.

Motivated by all this, in this paper we analyse near-horizon solutions and calculate
macroscopic entropy for a class of five-dimensional black holes in the N = 2 supergravities
for which higher-derivative R? actions were recently obtained in [[J]. In section J we



present D = 5 supersymmetric action [[J]. In section [ we review Sen’s entropy function
formalism [[[f]. In section fj we present maximally supersymmetric AdSy x S3 solution
which describes near-horizon geometry of purely electrically charged 1/2 BPS black holes.
In section [ for the case of simple STU prepotential we find non-BPS solutions for all values
of charges, except for some small black holes with one charge equal to 0 or +1. In section fj
we show how and when solutions from section [| can be generalized. In section [] we present
near horizon solutions for 3-charge black holes in heterotic string theory compactified on
K3 x 8! when the R? correction is given by Gauss-Bonnet density. and compare them
with the results from SUSY action. We show that for small black holes Gauss-Bonnet
correction keeps producing results in agreement with microscopic analyses. In appendix [
we present generalisation of section [] to general correction coefficients ¢z, and in appendix
derivations of results presented in section [f.

While our work was in the late stages references [[7, [[§] appeared which have some
overlap with our paper. In these papers near-horizon solutions and the entropy for BPS
black holes for supersymmetric corrections were given, which is a subject of our section [
Our results are in agreement with those in [17, [[§]. However, we emphasize that our near-
horizon solutions in sections [ and [ for non-BPS black holes are completely new. Also,
in [[Ig] there is a statement on matching of the entropy of BPS black hole for supersymmetric
and Gauss-Bonnet correction. We explicitly show in section [] that this is valid just for
first o/ correction.

2. Higher derivative N =2 SUGRA in D =5

Bosonic part of the Lagrangian for the N = 2 supergravity action in five dimensions is

given by
, D 3 2 D R
ALy = 20" AF0, AL + A (Z -l %) + N (5 +o 3v2> + 2N FL
1 1 -1
+NT1s (ZF({bFJab + 5amjwfaajw ) - 62—401 I ALR] FI cabede (2.1)

where A% = Af‘ab.Aa“b and v2 = vuv®. Also,
./\/ = éC]JKMIMJMK, N[ = 8]./\/ = %C[JKMJMK, N[J = 3[3]./\/ = C]JKMK
(2.2)
A bosonic field content of the theory is the following. We have Weyl multiplet which
contains the funfbein e}, the two-form auxiliary field vgp, and the scalar auxiliary field
D. There are ny vector multiplets enumerated by I = 1,...,ny, each containing the
one-form gauge field A’ (with the two-form field strength I/ = dA’) and the scalar M.
Scalar fields A%, which are belonging to the hypermultiplet, can be gauge fixed and the
convenient choice is given by

A2=—2, 9,AY =0 (2.3)



One can use equations of motion for auxiliary fields to get rid of them completely and
obtain the Lagrangian in a standard form:

1 —1
47T2£0 =R - GU(?QMI@“MJ — §G[JFC{bFJab + ZTCIJKAéFliFngadee (24)
with 1 1
G[J:—i({“)[((“)J(an\/)zi(N]NJ—N[J) (2.5)

and where A = 1 is implicitly understood (but only after taking derivatives in (2.§)). We
shall later use this form of Lagrangian to make connection with heterotic string effective
actions.

Lagrangian (R.4) can be obtained from 11-dimensional SUGRA by compactifying on
six-dimensional Calabi-Yau spaces (C'Y3). Then M7 have interpretation as moduli (volumes
of (1,1)-cycles), and cryx as intersection numbers. Condition A" =1 is a condition of real
special geometry. For a recent review and further references see [[[9].

Action (R.1)) is invariant under SUSY variations, which when acting on the purely
bosonic configurations (and after using (R.3)) are given with

. 1 . .
51% = Dye' + gv“b%wbel — Y

5fl = DEZ’ - 2767ab5iDavbc - 2")/UL{':Z‘eatbcalevbcvde + 4'7 ! W?i
. 1 . 1 . .
59]2 _ _Z,y . Flgl _ §,yaaaMI€z _ Mlnz
oC* = (377j — - vsj) AZ (2.6)

where 1/1; is gravitino, & auxiliary Majorana spinor (Weyl multiplet), 6Q/% gaugino (vector
multiplets), and ¢* is a fermion field from hypermultiplet.

In [[I§] four derivative part of the action was constructed by supersymmetric completion
of the mixed gauge-gravitational Chern-Simons term A A tr(R A R). The bosonic part of
the action relevant for our purposes was shown to be

cr el

1 1 1
47T2£1 _ ﬂ {EfabcdeAIaCbcfngefg + MI [gcadeCabcd + EDQ - gCabcdvabvcd

8 IR 4 . 4 R
+ 400 Vg — (vabvab)Q + gvabDchvac + gDavbcDavbc + gDavbcvaca

2 N 1 1 2 .
_geleabcdevabUCdevef] + F[ab |:6vabD _ 5 abchCd + geileabcdeUCdevef
N 4 1
—i—eileabcdevcfﬂ)dvef — gvacv“ivdb — gvabvﬂ } (2.7)

where c; are some constant coefficients,! Cypeq is the Weyl tensor which in five dimensions
is 1 1
Oy = Ry — 5 (g R — giRL — oG + ghRY) + R (dioh— giat)  (28)

'From the viewpoint of compactification of D = 11 SUGRA they are topological numbers connected to
second Chern class, see



and D, is the conformal covariant derivative, which when appearing linearly in (2.7) can
be substituted with ordinary covariant derivative D,, but when taken twice produces ad-

ditional curvature contributions [R1]:

A 2 1
vy DPD 0™ = v, DD + gvacvchZ + EUQR (2.9)

We are going to analyse extremal black hole solutions of the action obtained by com-

bining (.1)) and (R.7):2
A= / o =gL = / A\ =g(Lo + L1) (2.10)

As (R7) is a complicated function of auxiliary fields (including derivatives) it is now im-
possible to integrate them out in the closed form and obtain an action which includes just
the physical fields.

3. Near horizon geometry and entropy function formalism

The action (R.1() is quartic in derivatives and generally probably too complicated for
finding complete analytical black hole solutions even in the simplest spherically symmetric
case. But, if one is more modest and interested just in a near-horizon behavior (which is
enough to find the entropy) of extremal black holes, there is a smart way to do the job -
Sen’s entropy function formalism [L6].2

For five-dimensional spherically symmetric extremal black holes near-horizon geometry
is expected to be AdSy x S3, which has SO(2, 1) x SO(4) symmetry [RH. If the Lagrangian
can be written in a manifestly diffeomorphism covariant and gauge invariant way (as a
function of metric, Riemann tensor, covariant derivative, and gauge invariant fields, but
without connections) it is expected that near the horizon the complete background should
respect this symmetry. Then it follows that the only fields which can acquire non-vanishing
values near the horizon are scalars ¢, (purely electric) two-forms fields F/, and (purely
magnetic) three-form fields H,,. Explicitly written:

d 2
ds® = vy (—xth2 + %) + vy ng
T

¢s:us, 5:1,...,TLS
Fl = —eley, I=1,...,np
H,, = 2qn€s m=1,...,nyg (3.1)

where vy 2, us, el and ¢, are constants, €4 and eg are induced volume-forms on AdS, and
83, respectively. In case where F! (H,,) are gauge field strengths, e/ (g,,) are electric field

strengths (magnetic charges).

20ur conventions for Newton coupling is G5 = 72/4 and for the string tension o = 1.

3This formalism was used recently in near-horizon analyses of a broad classes of black holes and higher
dimensional objects % For generalisation to rotating black holes see [@] For comparison with SUSY
entropy functions see [P4].



It is important to notice that all covariant derivatives in this background are vanishing.

To obtain near-horizon solutions one defines
£(#,,8) = /SB«/_—gE (3.2)

extremization of which over ¥ and @ gives equations of motion (EOM’s)

of _, o _
(%Z-_ ’ aus_

0, (3.3)

and derivatives over € are giving (properly normalized) electric charges:

of

= — 3.4
ar el (3.4)

Finally, the entropy (equal to the Wald formula [R6]) is given with
SBH = 27 (ql el — f) (3.5)

Equivalently, one can define entropy function F as a Legendre transform of the function
f with respect to the electric fields and charges

F(0,1,¢q) = 2r (g e’ — f(7,4,¢)) (3.6)

Now equations of motion are obtained by extremizing entropy function

F r F
_9 0=2 0= 28 (3.7)

0= 2" _
ov; Ous ’ Oel

and the value at the extremum gives the black hole entropy
Spu = F(U,4, €, q) when 7, @, € satisfy (B.7) (3.8)

We want next to apply entropy function formalism to the N = 2 SUGRA from sec-
tion B. In this case for the near-horizon geometry (B.1) we explicitly have

2
ds®> = vy <—ﬂ:2dt2 + d%) + vg dQ%
x
Ftlr(x) = —¢', v (x) =V
Mi(z)=M', D(@)=D (3.9)
where v;, e/, M!, V, and D are constants.
Putting (B.9) into (R.1)) and (2.7) one gets
1
fo = 7V | (N +3) (3ur — va) =4V (3N +1) =2
1
8V NG 2 — ./\/ijeiejv—2 + D(N — 1)vyvy (3.10)
U1 vy



and

I 3
. 3/2 cre _4V DV Z l . i
Ji = vy { 48 [ 31)‘11 * 3v% * v% v U9

eM! |D? 4avt 1/1  1\? 2v2/5 3
(=== (=42 3.11
TR [12 * v} T v V2 3v? vl+v2 ’ (3.11)

correspondingly. Notice that for the background (B.9) all terms containing €peqe tensor

vanish. Complete function f is a sum

f=Jfo+h (3.12)
and EOM’s near the horizon are equivalent to
_ of _of _of _9f _of
0_(%1’ 0_(%2’ 0_8MI’ oV 0_(9D' (3:.13)

Notice that both fy and f; (and so f) are invariant on the transformation e/ — —el,

V — —V, with other variables remaining the same. This symmetry follows from CPT

invariance. We shall use it to obtain new solutions with q; — —qy.

4. Solutions with maximal supersymmetry

We want to find near horizon solutions using entropy function formalism described in
section f]. The procedure is to fix the set of electric charges g; and then solve the system
of equations (B.13), (B-4) with the function f given by (B.10)-(B.1F). It is immediately
obvious that though the system is algebraic, it is in generic case too complicated to be
solved in direct manner, and that one should try to find some additional information.

Such additional information can be obtained from supersymmetry. It is known that
there should be 1/2 BPS black hole solutions, for which it was shown in [7 that near
the horizon supersymmetry is enhanced fully. This means that in this case we can put all
variations in (R.6) to zero, which for AdSs x S? background become

1 A .
0="D,"+ §v“bfyuab€’ — '
0=De +4vy-vn

1 A A
O — _Z’Y'FIEZ_MIT]Z

0= (37 —v-ve) Aj (4.1)
Last equation fixes the spinor parameter n to be
1 .
n = 5(7 -v)e’ (4.2)

Using this, and the condition that ¢ is (geometrical) Killing spinor, in the remaining
equations one gets® the following conditions

7}2:4?}1, MI:W’ D:—/U—, V:Z\/E (43)
1 1

4 As the detailed derivation was already presented in [@] (solutions in the whole space) and in (near

horizon solutions), we shall just state the results here.



We see that conditions for full supersymmetry are so constraining that they fix everything
except one unknown, which we took above to be v1. To fix it, we just need one equation
from (B.13). In our case the simplest is to take equation for D, which gives

I
3/2 cre
vy = (e)* - 5 (4.4)
where we used a notation )
(e)® = EC[JKGIGJBK (4.5)

We note that higher derivative corrections violate real special geometry condition, i.e., we

have now N # 1.7
Using ({.3) and (f.4) in the expression for the entropy (B.5) one obtains

SBH = 167‘(’(6)3 (4.6)

Typically one is interested in expressing the results in terms of charges, not field
strengths, and this is achieved by using (B.4). As shown in [[[7, the results can be put in
compact form in the following way. We first define scaled moduli

M = oM. (4.7)

Solution for them is implicitly given with

— - c
8C[JKMJMK =qr + é (4.8)
and the entropy ([.6) becomes
8 o
Spn = ?WCUKMIMJMK (4.9)

A virtue of this presentation is that if one is interested only in entropy, then it is enough
to consider just (.§) and (£.9). It was shown in [B§ that (.9) agrees with the OSV
conjecture [fl, B9, after proper treatment of uplift from D =4 to D =5 is made.

We shall be especially interested in the case when prepotential is of the form
N = §M1cileM7 . > (4.10)

where ¢;; is a regular matrix with an inverse ¢ . In this case, which corresponds to K3 x T2
11-dimensional compactifications, it is easy to show that the entropy of BPS black holes is

1 . ... . c
Spu = 2y / §|Q1|C”qz'qg‘ ; qr=qr + gl (4.11)

5We emphasize that one should be cautious in geometric interpretation of this result. Higher order

given with

corrections generally change relations between fields in the effective action and geometric moduli, and one
needs field redefinitions to restore the relations. Then correctly defined moduli may still satisfy condition
for real special geometry.



5. N = M*M?M?3 model — heterotic string on T% x S?!

5.1 BH solutions without corrections

To analyse non-BPS solutions we take a simple model with I = 1,2, 3 and prepotential
N = M'M2M3 (5.1)

which is obtained when one compactifies 11-dimensional SUGRA on six-dimensional torus
TS. Tt is known [B{, Rd] that with this choice one obtains tree level effective action of
heterotic string compactified on T x S! which is wounded around S*.

The simplest way to see this is to do the following steps. Start with the Lagrangian
in the on-shell form (R.4), use (b.1]) with the condition N = 1, introduce two independent
moduli S and T such that

M'=8%3 . MP=STRTTt MP=STURT (5.2)

Finally, make Poincare duality transformation on the two-form gauge field F': introduce
additional 2-form B with the corresponding strength H = dB and add to the action a term

1 1 1 5 1 b
Ap=y [FnH=—5 /dm G (+H)° (5.3)
where * is Hodge star. If one first solves for the B field, the above term just forces two-form
F! to satisfy Bianchi identity, so the new action is classically equivalent to the starting
one. But if one solves for the F'' and puts the solution back into the action, after the dust

settles one obtains that Lagrangian density takes the form

1(88)2  (9T)2 SY3 s 1 2 S8 2
2 2/3m2 (2 3
47 EO =R-— g 52 - T2 - 12 ( C,Lbc) - ZS / T (Fab) - W (Fab) (54)
where 3-form field H' is defined with
1
H!,. = 0.Bp. — 3 (AZF;’C + AzFch) + (cyclic permutations of a, b, ¢) (5.5)

To get the action in an even more familiar form one performs a Weyl rescaling of the metric
Gab — 52/3gab (56)

where in the new metric Lagrangian (5.4) takes the form

(08)> (o7 1 o T2 9 1
o 1 e — g el — g

(F3) (5.7)

a

ALy =S |R +

One can now check® that (5-4) and (F.7) are indeed lowest order (in o’ and gs) effective
Lagrangians in Einstein and string frame, respectively, of the heterotic string compactified

SFor example by comparing with egs. (2.2), (2.8) and (2.3) in [@] Observe that, beside simple change in
indices 1 — 2 and 2 — 3, one needs to divide gauge fields by a factor of two to get results in Sen’s conventions.
There is also a difference in a convention for o/, which makes normalization of charges different.



on T* x S' with the only ”charges” coming from winding and momentum on S'. Field
T plays the role of a radius of S', and field S is a function of a dilaton field such that
S ~ 1/g2. This interpretation immediately forces all M7 to be positive.

We are interested in finding 3-charge near-horizon solutions for BH’s when the prepo-
tential is (p.1)). Applying entropy function formalism on (B.1() one easily gets:

1
vi= g |q1g2g3]""* (5:8)
3/2
4v 1
I _ %y 1/2
o _ b 5.9
- 207 719243 (5.9)
MI — ﬂ — Q1QZQ3 1/3 (5 10)
v V1 Q%
vy = duy (5.11)
1 . . .
D = — |sign(q1) + sign(gz) + sign(gs3)| (5.12)
VU1, . . .
V = = (sign(q1) + sign(qz) + sign(gs)) (5.13)

and the entropy is given with
S=2r |q1q2q;5|1/2 (5.14)

In fact in this case full solutions (not only near-horizon but in the whole space) were
explicitly constructed in [BI].

If any of charges g7 vanishes, one gets singular solutions with vanishing horizon area.
Such solutions correspond to small black holes. One expects that higher order (string)
corrections “blow up” the horizon and make solutions regular.

5.2 Inclusion of SUSY corrections

We would now like to find near horizon solutions for extremal black holes when the action
is extended with the supersymmetric higher derivative correction (R.7). We already saw
in section [ how this can be done for the special case of 1/2 BPS solutions, i.e., in case of
non-negative charges q; > 0. The question is could the same be done for general sets of
charges.

Again, even for the simple prepotential (b.1]) any attempt of direct solving of EOM’s is
futile. In the BPS case we used vanishing of all supersymmetry variations which gave the
conditions (b.10)(p.14), which are not affected by higher derivative correction, and that
enabled us to find a complete solution. Now, for non-BPS case, we cannot use the same
argument, and naive guess that (5.10), (5.14) is preserved after inclusion of correction is
inconsistent with EOM’s.

Intriguingly, there is something which is shared by (BPS and non-BPS) solutions (5.§)-
(6.13) — the following two relations:

,10,



The above conditions are connected with supersymmetry. The first one, when plugged in
the Lo (R.]), makes the first bracket (multiplying A?) to vanish. The second condition,
when plugged in the £; (B.7), makes the term multiplying c; M? to vanish. We shall return
to this point in section .

What is important is that for (b.15) and (p.16) we needed just eqs. (f.11))-(p.13) (and,

in particular, not eq. (6.10)). Our idea is to take (b.11)—(p.13) as an ansatz, plug this into
all EOM’s and find out is it working also in the non-BPS case. Using the CPT symmetry

it is obvious that there are just two independent cases. We can choose

3 3
vg = 4v; y D=—— y V= -1/ V1, (5.17)
U1 4
which corresponds to BPS case (see ([.3)), and
1 1
1)2241)1 s D=—— s V:Z\/Ul (5.18)
U1

Though in the lowest order (p.17) appears when all charges are positive, and (5.1§) when
just one charge is negative (see (p.11)—(.13)), we shall not suppose a priori any condition
on the charges.

For the start, let us restrict coefficients ¢y such that

=24 >0, ca=c3=0. (5.19)

This choice appears when one considers heterotic string effective action on the tree level
in string coupling g, but taking into account (part of) corrections in /.7 In this case we
have ¢ = 1. For completeness, we present results for general coefficients ¢; in appendix [A.

Let us now start with the ansatz (5.1§). The EOM’s can now be written in the following
form:

b2 p3eed = 0

bpdeled =
brhZele? =
4 (b2b3 — 1) e?ed = ¢ — g

40" — 1) e'e® = g

4 (blb2 — 1) ele? = g3
4207 4 (€ (60" — 1) + 6 (4b'6%> — 3(b' + 1)(B> + 1)(1° + 1) +4) ¢2e%) e =
1872 4+ (6 (46'6%6° + (B + 1)(b% + 1)(1* + 1) + 4) e2e® — ¢ (26" +5)) ' =
6037 + (C(26" +1) =6 (b" + 1) (2 +1) (> + 1) 2e®) e =
607+ (¢ (106! +9) +6 (3b62H° —b'b2 —b2H% —b'bP —B(b +b2+b%) —9) €2 €' =

where b! are defined with
M= (140! (5.20)

"To consider corrections in gs it would be necessary also to make corrections in the prepotential (i.e., to

CIIK).

— 11 —



Now there are more equations than unknowns, so the system is naively overdetermined.
However, not all equations are independent and the system is solvable. First notice that
first three equations imply that two of b!’s should vanish, which enormously simplifies
solving.

Let us summarize our results. We have found that there are six branches of solutions
satisfying® M’ > 0, depending on the value of the charges ¢;.

e q1>(/3,¢q2>0,q3<0

Solutions are given with:

211/3
1t g .
e! ¢\ _ e a—(/3
= (n-3) = NG BN T (522)

M3 M M?
M3oT  qi+¢ Vi MAET (5.29)

e q—C¢/37 el e?

together with (5.1§). The entropy is given with

4243 <Q1 - E)
3

For heterotic string one has ( = 1 and ¢; are integer, so the condition can be written

1/2

Spi = 27 (5.24)

also as ¢1 > 0.

e q1>(/3,¢q2<0,q3>0

As the theory is symmetric on the exchange (2) <> (3), the only difference from the
previous case is that now we have

MR ake MYE M 529

e? a—C¢/37 el e3
and everything else is the same.

¢ 1 <—(C q2>0,q3>0

Here the only difference from solutions in previous two cases is:

MY o1 ¢ —(/3 M2yur  MPyfor 1 (5.26)

el aq+C¢ e2 e3

For heterotic string ¢ = 1 the bound for ¢ is ¢1 < —1.

Beside these three "normal” branches, there are additional three ”strange” branches which

appear for |q1]| < (/3:

8We note that, as was shown in D = 4 [@]7 that corrections can change relations between fields in the
action and moduli of the compactification manifold, so one should be careful when demanding physicality
conditions.
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d |Q1|<</37 Q2<0, QB<0

For every of the three branches discussed above, there is an additional, mathemati-
cally connected, branch, for which the difference is that now in all branches we have
lg1] < ¢/3, g2 < 0, g3 < 0. All formulas are the same, except that the entropy is

4243 <Q1 - £>
3

Additional reason why we call these solutions ”strange” is the fact that electric fields

negative
1/2

Spir = —2 (5.27)

and charges have opposite sign. It is questionable that there are asymptotically flat
BH solutions with such near-horizon behaviour, and for the rest of the paper we shall
ignore them.

Now we take the “BPS” ansatz (5.17). There is only one branch of solutions, valid for
423> 0, 1> —C:

e ¢1>—( q2>0,g3>0

Solution now takes the form

1 2 1/3
v = — QQQ3(QI + C) (528)
4 g1+ 3¢
el e2 e3 +3
= (@ +3¢) = ¢ _ g _ ,a+3¢ (5.29)

vy V3 a V3 g+
Mo Mo Mo (5.30)

together with (p.I7). The entropy is given with

Seu = 27 |qags (q1 + 3¢)[/? (5.31)

One can check that this is equal to the BPS solution from section ] with the prepo-
tential and ¢y given by (b.1) and (5.19).

Solutions for the cases when two or all three charges are negative are simply obtained by

1

applying the CPT transformations e/ — —e!, ¢! — —¢!, V' — —V on the solutions above.

5.3 Some remarks on the solutions

Let us summarize the results of section .9, For the prepotential (b.1]) and (f.19) we have
found nonsingular extremal near-horizon solutions with AdSs x S3 geometry for all values
of charges (¢1, g2, q3) except for some special cases. For black hole entropy we have obtained
that supersymmetric higher order (R?) correction just introduces a shift ¢; — §1 = q1 + a,

SeH = 27/[G19243|

where a = £3,+1/3.
For the action connected with compactified heterotic string, i.e., when ( = 1 and
charges are integer valued, exceptions are:

,13,



(1) g293=0
(i) ¢1=0, g2q3 <0
(iii) ¢1 = =1, g2,q93 > 0 (and also with reversed signs)

It is easy to show that in order to have small effective string coupling near the horizon
we need gaq3 > 1 which precludes case (i) (string loop corrections make cz3 # 0 which
regulate case (i), see Append. [Al). For the cases (ii) and (iii) one possibility is that regular
solutions exist, but they are not given by our ansdtze. But, our efforts to find numerical
solutions also failed, so it is also possible that such solutions do not exist. This would
not be that strange for cases (i) and (ii), as they correspond to black hole solutions which
were already singular (small) with vanishing entropy before inclusion of supersymmetric
R? corrections. But for the case (iii) it would be somewhat bizarre, because it would mean
that higher order corrections turn nonsingular solution into singular.

Let us make a comment on a consequence of the violation of the real special geometry
condition by supersymmetric higher-derivative corrections. We have seen that the example
analysed in this section can be viewed as the tree-level effective action of heterotic string
compactified on T* x S supplied with part of ' corrections. In section p.1 we saw that
in the lowest order a radius T of S! was identified with 7% = M3/M?2. From (p.28)-(F-30)
follows that in the BPS solution we have

y (5.32)
43
which is expected from T-duality g < g3, T — T~ .
But, in the lowest order we also have T2 = M!(M?)2, which gives

_Pa+3
g3 q1+1

T2

(5.33)

which does not satisfy T-duality. It means that relation 72 = M (M3)? receives higher-
derivative corrections.” That at least one of relations for 7" is violated by corrections was
of course expected from N # 1.1

6. Generalisation to other prepotentials

A natural question would be to ask in what extend one can generalize construction from
the previous section. In mathematical terms, the question is of validity of ansatz (p.1§)

1 1

1)2:41)1 5 D:—v—1 5 V= Z\/a (61)
which we call ansatz 1, and (f.17)
3 3
U2:4’Ul, D:—a, V:Z\/’U—l, (62)

9Similar observation in D = 4 dimensions was given in .
ONotice that for some non-BPS solutions both relations are violated.
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which we call ansatz 3 (ansatz 2 and 4 are obtained by applying CPT transformation, i.e,
V- =V).
We have seen in section [ that for BPS states supersymmetry directly dictates validity
of ansatz 3 (and by symmetry also 4). The remaining question is how general is ansatz 1.
Putting (.1]) in EOM’s one gets

C[JK@JGK + 2N = 2./\_/[J€J
rl 3/2 v 7 I J\ _ I val
6 (crM" +168v)" + 24N + 48N e'e’ | = Tere’ + 576N e

3/2

144 (31}1 + 5N + 2./\_/[J€I€J = 30[61 + 201]\_4[ + 576/\7[61

N—— ——

crel + 144N = 2 (C[MI + 72v§/2>

cre! + 576N el = 10c, M7 + 1440 + 432N
c _ _
ql—7—;:4./\/1—4./\/’1JBJ (6.3)

and for the black hole entropy

dr

SBH =4 (2./\_/ - ./\_/[JGIGJ) = ?(jje (6.4)

It can be shown that two equations in (f.J) are not independent. In fact, by further
manipulation the system can be put in the simpler form

0= CIJK (MJ — e‘]) (MK — eK) (6.5)
cr Mt _ _
112 = crr (M! +el) M7 e (6.6)
I
3/2 _ cret 3
qr — % = —2¢pyie’el (6.8)

Still the above system is generically overdetermined as there is one equation more than the
number of unknowns. More precisely, egs. (f.5) and (p.6) should be compatible, and this
is not happening for generic choice of parameters. One can check this, e.g., by numerically
solving simultaneously (p.§) and (6.6) for random choices of ¢; g, ¢; and ef. This means
that for generic prepotentials the ansatz 1 (f.1)) is not working.

However, there are cases in which the system is regular and there are physical solutions.
This happens, e.g., for prepotentials of the type

1 o
N = §M1cileM] , i,5>1 (6.9)
where ¢;; is a regular matrix. In this case (p.5) gives conditions
0:(]\_41—61) (Mi—ei) , O:(Mi—ei) Cij (Mj—ej) (6.10)

which has one obvious solution when M? = ¢’ for all i. Now M is left undetermined, and
one uses “the extra equation” (.6) to get it. Black hole entropy becomes

| . cr
Spn = 274 §|Q1|C”qz'qg‘ ) qr = qr — = (6.11)
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where ¢¥ is matrix inverse of ¢ij. Again, the influence of higher order supersymmetric
correction is just to shift electric charges q; — §r, but with the different value for the shift
constant than for BPS black holes.

We have noted in section p.9 that ansatz 1 (f.1§), which gives nonsupersymmetric
solutions, has some interesting relations with supersymmetry. Another way to see this is
to analyse supersymmetry variations (B.G). Let us take that spinor parameters n and e are

now connected with
n' = (y-v)e (6.12)

The variations (.6) now become

S, = <DH + %v“bmb — (v v)) e (6.13)

0¢' = (D+4(y-v)) e (6.14)
sQli = — <37-F1 +M17-v> g (6.15)
8¢ = 2(y - v)el AT (6.16)

One can take a gauge in which .A;?‘ = 5?‘, which means that last (hypermultiplet) varia-
tion (p.16) is now nonvanishing. But, it is easy to see that for ansatz 1 (and when €’ is
Killing spinor) variations (f.13) and (6.14) are vanishing. Also, we have seen that solutions
we have been explicitly constructed have the property that for all values of the index I

except one (which we denote J) we had
M =l I#J (6.17)

From this follows that all variations (5.19) except the one for I = J are also vanishing.
One possible explanation for such partial vanishing of variations could be that our non-BPS
states of N = 2 SUGRA are connected with BPS states of some theory with higher (e.g.,
N = 4) supersymmetry.

7. Gauss-Bonnet correction

It is known that in some cases of black holes in D = 4 Gauss-Bonnet term somehow
effectively takes into account all o string corrections. Let us now investigate what is
happening in D = 5. This means that we now add as R? correction to the O order

Lagrangian (.1]) instead of (R.7)) just the term proportional to the Gauss-Bonnet density:

1 lefM!

Lo = 23 90 <RabcdRade — 4R R™ + R2> (7.1)

To apply entropy function formalism we start with
[ =Jfo+ feB (7.2)

where fj is again given in (B.1() and fgp is
3 _eM!

-2 7.3
feB V02—, (7.3)
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Strictly speaking, we have taken just (part of) first order correction in ', so normally
we would expect the above action to give us at best just the first order correction in entropy.

Oth

This we obtain by putting 0"*-order solution in the expression

ASpg = —21Af (7.4)

where Af is 15%-order correction in f. It is easy to show that for the BPS 0*"-order solu-
tion (f.J) one obtains the same result for supersymmetric (B.11]) and Gauss-Bonnet ([.3)
corrections, which can be written in a form:

Cjel

It was noted in [[7] that for compactifications on elliptically fibred Calabi-Yau ([.5) agrees
with the correction of microscopic entropy proposed earlier by Vafa [BJ. We note that
for non-BPS black holes already first o/ correction to entropy is different for SUSY and
Gauss-Bonnet case.

From experience in D = 4 one could be tempted to suppose that SUSY and Gauss-
Bonnet solutions are exactly (not just perturbatively) equal. However, this is not true
anymore in D = 5. The simplest way to see this is to analyse opposite extreme where one

of the charges is zero (small black holes). To explicitly show the difference let us analyse
models of the type (obtained from K3 x T? compactifications of D = 11 SUGRA)

1 L
N = §M1c,~jMZMJ , =0, i,j>1 (7.6)

in the case where ¢; = 0. For the Gauss-Bonnet correction, application of entropy function
formalism of section [} on (7.9) gives for the entropy (see appendix [B))

1 (&1 ..
Sap = 47 gﬂqiczﬂqj (7.7)

where ¢ is the matrix inverse of ¢;;. On the other hand, from (L) follows that for the
supersymmetric correction in the BPS case one gets

3 C1 ..
Ssusy = 2m/ 35,44 (7.8)

which is differing from (7.7) by a factor of 2/v/3.

In [BJ] some of the models of this type were analysed from microscopic point of view
and the obtained entropy of small black holes agrees with the Gauss-Bonnet result (7.7).

Now, the fact that simple Gauss-Bonnet correction is giving the correct results for BPS
black hole entropy in both extremes, ¢ = 0 and ¢; > 1, is enough to wonder could it be
that it gives the correct microscopic entropy for all ¢; > 0 (as it gives for 4 and 8-charge
black holes in D = 4). Analytical results, with details of calculation, for the generic matrix
¢;; and charge g3 are presented in appendix [B.

Here we shall present results for the specific case, already mentioned in section [, of
the heterotic string compactified on 7% x S'. Tree-level (in g,) effective action is defined
with

N = M'M2M3 =24, co=c3=0. (7.9)
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Matrix c¢;; is obviously here given with
C12 = C21 = 1 s C11 — C22 = 0 (710)

As the simple Gauss-Bonnet correction (@) does not contain auxiliary fields, we can
integrate them out in the same way as it was done in the lowest-order case in section p.1.
For independent moduli we again use

S= (M2 T=M?=5V30M2 (7.11)

Oth

It appears that it is easier to work in string frame, where the order action is given

in (5.4), and the correction ([.1) is now

1S

=173 <RabcdRade — 4R, R™ + R2) + (terms containing 9,5) (7.12)
T

LaB

We are going to be interested in near-horizon region where all covariant derivatives, in-
cluding 0,5, vanish, so we can again just keep Gauss-Bonnet density term.
Application of (B.1) here gives that solution near the horizon has the form

ds® = v, <—x2dt2 + dx_m;> + vg dQ%
S(x) =85, T(x)=T
FO(z) = —e; i=2,3
Honr = 2q1\/ 1S Emny (7.13)

where &,,,,;- is totally antisymmetric tensor with 934 = 1. Observe that ¢; is now a magnetic

charge. Using this in (5.7) and ([.13) gives

1 3 2 6 T%3 e3 2¢3 3
= — S|—+ — - — - 7.14
! 22}11)2 ( U1 + V9 + 2v% + 2T2v% vg’ V12 ( )

Following the entropy function formalism we need to solve the system of equations

of of of of of of
0=— 0=— 0=—= 0=— = =— (7.15
vy vy’ 28"’ o BT g BT g (1Y)
After some straightforward algebra we obtain
72 = |2 (7.16)
a3

which is the same as without the correction and respecting T-duality. Also

1 [2ug+1
, S ==/ /]gaqs] - (7.17)

V2 2U2 + 3

V2
4

| =

V] = +

Here vy is the real root of a cubic equation
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which, explicitly written, is

(1+14v/3)(4qf +3)

1
vy = = + 1/3
431/3 (_9 — 367 +2v/3y/274} + 72¢} — 166]?)

2

1/3
(1—iV3) <—9 — 3602 + 2V/3\/TTE + T2gT = 16q§°’>

+ 432/3

(7.19)

For the macroscopic black hole entropy we obtain

3v
Spn = 47/ |qaqs|y [ v1 + 5@—; (7.20)

It would be interesting to compare this result with the statistical entropy of BPS states
(correspondingly charged) in heterotic string theory. Unfortunately, this result is still not
known.
For small 2-charge black holes ¢; = 0, and the solution further simplifies to
V2 1

_v_ 1 21
U173 7 (7.21)

which gives for the entropy of small black holes

SBH = 471'\/ ’(pq?,‘ (7.22)

This solution was already obtained in [[J] by starting at the beginning with ¢; = 0.1

8. Conclusion and outlook

We have shown that for some prepotentials, including important family obtained with
K3 x T? compactifications of 11-dimensional SUGRA, one can find non-BPS spherically
symmetric extremal black hole near horizon solutions. In particular, for the simple example
of so called STU theory we have explicitly constructed solutions for all values of charges
with the exception of some small black holes where one of the charges is equal to 0 or +1.
One of the ideas was to compare results with the ones obtained by taking R? correction
to be just given with Gauss-Bonnet density, and especially to analyse cases when the actions
are connected with string compactifications, like e.g., heterotic string on K3 x S', where
for some instances one can find statistical entropies. Though for Gauss-Bonnet correction
(which manifestly breaks SUSY) it was not possible to calculate entropy in a closed form
for generic prepotentials, on some examples we have explicitly shown that in D = 5,
contrary to D = 4 examples, black hole entropy is different from the one obtained using
supersymmetric correction (BPS or non-BPS case). Interestingly, first order corrections to
entropy of BPS black holes are the same for all prepotentials, and are in agreement with
the result for statistical entropy for elliptically fibred Calabi-Yau compactification [B9].

" Notice that we are using o’ = 1 convention, and in [@] it is o’ = 16. One can use the results from [E]
to make connection between conventions.
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For the K3 x T? compactifications of D = 11 SUGRA (which includes K3 x S*
compactification of heterotic string) we have found explicit formula for the black hole
entropy in the case of Gauss-Bonnet correction. Unfortunately, expression for statistical
entropy for generic values of charges is still not known, but there are examples for which
statistical entropy of BPS states corresponding to small black holes is known [B3]. We
have obtained that Gauss-Bonnet correction leads to the macroscopic entropy equal to
statistical, contrary to supersymmetric correction which leads to different result. This
result favors Gauss-Bonnet correction. On the other hand, for large black holes, it is
the supersymmetric result ([.11]) which agrees with OSV conjecture properly uplifted to
D =5 [R§]. We propose to resolve this issue perturbatively by calculating a’? correction
for 3-charge black holes in heterotic string theory compactified on K3 x S' using methods
of [B4]. Calculation is underway and results will be presented elsewhere [BF.

It is known that theories in which higher curvature correction are given by (extended)
Gauss-Bonnet densities have special properties, some of which are unique. Beside famil-
iar ones (equations of motion are “normal” second order, in flat space and some other
backgrounds they are free of ghosts and other spurious states, have well defined boundary
terms and variational problem, first and second order formalisms are classically equivalent,
extended Gauss-Bonnet densities have topological origin and are related to anomalies,
etc), they also appear special in the approaches where black hole horizon is treated as a
boundary and entropy is a consequence of the broken diffeomorphisms by the boundary
condition [BA]. It would be interesting to understand in which way this is connected with
the observed fact that these terms effectively encode a lot of near-horizon properties for a
class of BPS black holes in string theory.
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A. Solutions for N' = M'M?M?3 but general c;
In this appendix we consider actions with
N = M'M?* M3 (A1)
but arbitrary coefficients cy. Let us define
Cr
== A2
=g (A2)

and for simplicity restrict to (; > 0. We shall concentrate on non-BPS solutions and ansatz
1. For this case we can specialize the general expression for relation between electric charges
and field strengths (b.§) as follows

1 = —de?e®, Go = —de’e! | g3 = —de'e? (A-3)
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where we introduced shifted charges

q qr — g
1=4ar-3
From here follow also simple relations
' _ €2 _ g — _(e)?
4 4 4
We introduce definition
Mi
Ai:—. v, ’L':1,2,3
el

The corresponding system of equations then follows from equation (6.3)

(=1 + Ao)(—1 + Az)e?e® = 0
(=14 A1) (=1 + Az)ele® =0
(=1 + A (=1 + Ay)ele? =0

6(7?}:15/2 + Alel((4 —4A5 + (—4 + AQ)A3)€2€3 + Cl +

)
+Aze? (—A(—1+ Ag)e'e® + (o) + Aze®(de' e + (3)) = T(e' (1 + G + €(3) (A.10)
)

18052 1 2e1 (3(4A3 + Ay (4 — 4As + Ax(—4 + 5A3)))e2ed — A1¢y) =
= 3el¢; + 3e%(Co + 2422 (12(—1 + As)ele® + () + (3 + 243)e%(s

(A.11)

62}?/2 + 2A161(—3A2A36263 + Cl) + (—1 + A2)62<2 + (—1 + A3)63<3 = 61<1 (A12)

60> + 2e! (3(—4A2A3 + Ay (—4A3 + Ag(—4 + 343)))e2e® + 5A1() +

+10A2e%¢o + (=1 + 10A43)e’ (3 = €' (1 + €%(2

(A.13)

We shall again find solutions with one negative and two positive shifted charges, and

“strange” solutions with all shifted charges negative.
® 1 <—4G/3, >0, §¢>0
We first describe solutions with one charge negative, e. g., qg;. Then

1/6

2
Jor = (o)
1=5 A1/6 A1/6 A1/6

Q) = 14243 + (C1G243 + C24143 + C3G1G2)
A, - (ACsd + (4C2 + 342)d3)dn A1,  Ag—1
(4¢1 + 3G1) G233
wlo A Q3) 4342 + (4¢2 + 3G2) g3
48v7 G243 G+ 3G
M2:4IQ1Q3 WE _41q1q2
Q(3 Q3)
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(A.15)

(A.16)
(A.17)
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Here we are able to impose positivity restriction,

M >0, i=1,2,3
M? > 0:>£<O:>Q(3)<O
)
M3 > 0 is automatically satisfied.
Consider now M! > 0. Note first that Q3/d2gz < 0. Thus we obtain that

4C3G2 + (4C2 + 3G2)q3

- <0
Q1+§C1

But numerator is positive so we get

R 4
Q1+§C1<0

(A.19)
(A.20)

(A.21)

(A.22)

Note that under mentioned restrictions the property @3y < 0 is indeed satisfied. In

fact
a2 A\ .
Q@3) = (16243 + g(Clqm?, + (24143 + (3G1G2)
4 2 o o o
<-3 C1G2G3 + 3 (€1G2G3 + €2G1G3 + (3G1G2)
2 2 o o
=-3 C1G2G3 + 3 (C24143 + (3G1G2) < O
Let us find entropy. We shall use (B.5), (B.12) and (A.6) to obtain:
F = 87‘(‘(6)3 {A1A2A3 — (A1 + Ag + Ag)}

But Ay = A3 =1 so
SBH = —167‘((6)3

Q

From the explicit form of the solution (JA.14)—(A.1§) we have

Spr = 27 sign <Q1QQQ3> =

Q(3) —q14243

But sign (41G243/Q(3)) = +1 so
Spu = 2m/|q1G233|
We finally conclude that presented solution is valid for
g3 >0, C?1<—§C1, G2 >0
completely analogous to the first case in section f.2

G1>0, G2<—3C, G3>0

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

In this case all relations can be obtained from previous case with exchange (1) < (2).
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¢ @1>0, 2>0, ¢5<—3G

Analogously this case can be obtained from the first case with interchange (1) < (3).

In addition to described 3 “normal” branches there are also 3 “strange” branches which

SBH = —271'\/ |(f1(22(i3| (A29)

Such a solution may occur only if all §;’s are negative.

give negative entropy:

B. Gauss-Bonnet correction in K3 X T? compactifications

In this appendix we give the proof of the eqs. ([.4) and (7.24). We consider the actions
with 1
N = §MlcijM’M] , o1 = 24C, =0, i,j>1 (B.1)

and when the higher order correction is proportional to the Gauss-Bonnet density, i.e., it
is given with ([f.1]). For such corrections one can integrate out auxiliary fields in the same
manner as when there is no correction, and pass to the on-shell form of the action which is
now given with (B.4) and ([.1]), with the condition for real special geometry A" = 1 (which
is here not violated by higher order Gauss-Bonnet corrections) implicitly understood.
Now, before going to a hard work, it is convenient to do following transformations
(which is a generalisation of what we did in section p.1)). First we introduce scaled moduli
M? and the dilaton S
S=(MY2 M= SYSM (B.2)

for which the real special geometry condition now reads
1 -~
§CijMZM] =1 (B3)

This condition fixes one of M?’s. Then we make Poincare duality transformation (F-3)
which replaces two-form gauge field strength F'' with its dual 3-form strength H. Finally,
we pass to the string frame metric by Weyl rescaling

gab — S gap - (B.4)
Again, we are interested in AdS, x S? backgrounds which in the present case requires
d 2
ds® = v, (—detQ + %) + vy dQ%
x

ﬂlr(x) = _ei 5 Hoppr = 2(11 V hS Emnr
Mi(z) = M*, S(x)=2S (B.5)

where g,y is totally antisymmetric tensor satisfying €934 = 1. Observe that ¢; now plays
the role of magnetic charge. We apply entropy function formalism of section . Function

f is now
1 3/ 2 6 1~ .. 2¢ 3
= — S| ——+—+ 5Gjeed — — — B.6
f 2011}2 ( U1+’L)2+’U% Uee ’U% V1V9 ( )
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where éij is given with

1 - -
Gij = 5 (CikMijlMl - Cij) (B?)
To obtain solutions we need to solve extremization equations

_or 9 _of o _9f . _of

0=2g.," = Doy 98 T BT 9

(B.8)

From the third equation (for S) one obtains that f is vanishing. This allows us to solve
immediately first two equations (for v; and vy) and obtain

va ¢
=— 4= B.
V1 4 + 8 ( 9)

where vy is the real positive root of a cubic equation

3 ¢
0=a%— 5(:62 — @ — 5(1% (B.10)

which is, explicitly written,
(1+iv3)(4qf +3¢%)

1/3
431/3 (—9(3 — 3647 + 2v/31/27¢ g7 + 72¢%q1 - 16(1?)
1/3

DO [

Vg = +

(1-1iV3) <—9C3 —36¢q7 + 2v/31/27¢1qF + 72¢2¢] — 16q?>

+ 432/3

(B.11)

Next one can solve equations for M?. Note that one of them is not independent because
of (B.3), but this can be easily treated, e.g., by using Lagrange multiplier method. One
obtains
0= CijeiMj [anMk <Cij€iMj) — Qanek} (B.l?)
from which follow conditions
0= cijeiMj or (cnkMk)(cijeiMj) = 2¢pe” (B.13)
From the third equation in (B-§) (for S) we obtain

~ . 3 v
Gijelej =1+ §<v—; (B14)

Last equation in (B.§), which defines electric charges, gives
B2
q; = 52—G¢j6J (B.15)

U1

which, together with (B.7) and (B.13) gives

3/2

v .
g = :FS—ILQ)1 cije’ (B.16)

— 24 —



where the upper (lower) sign is when first (second) condition in (B.13) applies. For the

entropy we need g;e?, which from (B.15) is

S
gie' = —12)1 SGize'e’ (B.17)

We need a solution for the dilaton S which is obtained by contracting (B.14) with gc*’.
The result is

12
2qic q;
@ijeiej

U1

3/2
Ugy

S =

(B.18)

Using this in ([B.17) we finally get for the black hole entropy

; - . /1 . 3 1 .
SpH = 2mqie’ = 41/ Gijetel | 3 lgictiq;| = 477\/?)1 + §Cﬂ 3 lgict ;| (B.19)
U2

where v, and vg are functions of ¢; and ¢ given in (B.g) and (B.11). Observe that here
entropy is nontrivial function of charge ¢; (obtained by solving cubic equation), contrary

to the case of SUSY corrections which just introduce a constant shifts.
For small black holes, i.e., when ¢; = 0, eqgs. (B.9), (B.11)) and (B.14) simplify to

v = % = g s Gweze] :C (BQO)

Plugging this in (B.19) gives for the entropy

Spu = 474/ g lqic g, for 1 =0 (B.21)

which is exactly (7.7).
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